The difference in actual sound pressure for an increase from 50 to 100 dB(A)

Sound Pressure for 50 dB(A)

\[dB(A) = 20 \times \log\left(\frac{\text{sound pressure}}{\text{sound pressure at 0 dB(A)}}\right) \]
\[50 \text{ dB(A)} = 20 \times \log\left(\frac{\text{sound pressure}}{20}\right) \]
\[\frac{50}{20} = \log\left(\frac{\text{sound pressure}}{20}\right) \]
\[2.25 = \log\left(\frac{\text{sound pressure}}{20}\right) \]
\[10^{2.25} = \text{sound pressure/20} \]
\[316.228 \times 20 = \text{sound pressure} = 6324.55 \text{ micro pascals at 50 dB(A)} \]

Sound Pressure for 100 dB(A)

\[dB(A) = 20 \times \log\left(\frac{\text{sound pressure}}{\text{sound pressure at 0 dB(A)}}\right) \]
\[100 \text{ dB(A)} = 20 \times \log\left(\frac{\text{sound pressure}}{20}\right) \]
\[\frac{100}{20} = \log\left(\frac{\text{sound pressure}}{20}\right) \]
\[5 = \log\left(\frac{\text{sound pressure}}{20}\right) \]
\[10^5 = \text{sound pressure/20} \]
\[100,000 \times 20 = \text{sound pressure} = 2,000,000 \text{ micro pascals at 100 dB(A)} \]

Sound pressure multiplier from 50 to 100 dB(A)

\[\frac{2,000,000}{6324.55} = 316 \text{ times louder} \]